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The Hausdorff a-Dimensional Measures of the Level Sets

and the Graph of the N-Parameter Wiener Process

Madan L Puri I and Lanh Tat Tran

Indiana University, Bloomington

iI

Let W Nd) be the N-parameter Wiener process with
d

values in Rd Then the dimension of the level sets is

N-d/2 with positive probability if d < 2N The dimen-

sion of the graph is a.s. min{2N, N +d/2} . The level sets

have zero (N -d/2) -measure a.s. and the graph has zero

min{2N , N +d/2} -measure a.s.-

1. Introduction and Preliminaries

Let W (N ) be the N-parameter Wiener process, that is

a real-valued separable Gaussian process with zero means and

covariance N min (si,t) where x = <s.> , t

< > 0 t ' 0 , i = 1,...,N Then W(Nd) is to

AMS(MOS) 1970 subject classifications. Primary 60G15;
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be the process with values in Rd  such that each component

is an N-parameter Wiener process, and the components are

independent. For the case N = a = 1 , Taylor (1953) showed

that a.s. the Hausdorff dimensions of the level sets and the

graph of the Brownian motion are 1/2 and 3/2 respectively:

furthermore, the 1/2 -measure of the level sets and 3/2

- measure of the graph are zero. The purpose of this paper

is to extend Taylor's results to W(N 'd) Our investigation

on the level sets is motivated by a question raised by Pyke

(1972) as to what topological or dimensional properties are

possessed by the zero-sets of W(N 'I)

Wherever possible, we shall use the notation of Orey

and Pruitt (1973). The parameter space is the set t F RN
+

with all components non-negative. We sometimes write t as
<tl ,tN or simply <t.> When all t. = a , <t.> is

written as <a> By t > s , we mean t. > s. for alli 1

1 i N For s = <s.> and t = <t.> with1 i

s < ti X N [Si I ti  is denoted by A(s , t) or A(t)

in case s = <0> The interval A(<1/2> , <1>) referred

to often will be denoted by I for brevity. For simplicity
W (Nd) Dth

we shall write W = W component of

i NW by W where 1 < i d Let s,tER + Then the

variance of Wi (t) - Wi (s) can be verified to be IS(s,t)I

where S(s,t) is the symmetric difference between A(s)

and A(t) and I I denotes the N-dimensional Lebesque

measure.

We will often state that W has scaling property and

stationary independent increments. For an account of these

properties and further information on W , the reader is
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referred to Kitagawa (1951) , Chentsov (1956) , Yeh (1960

1963a , 1963b) , Delporte (1966) , C. Park (1967) , W. J. Park

(1970) , Zimmerman (1972) , Orey and Pruitt (1973) and Tran

(1976 , 1977) Occasionally we will use c to denote con-

stants whose values are unimportant and may be different from

line to line.

2. Dimensions of the level sets and graph

Let u E R d  Define W- (u) ={t E A(<0>,<1>) : W(t) = u}

when u is not the origin of Rd , and when u is the

origin of Rd , define W-l(u) ={tE A(<0> , <1>) :0 < t and

W(t) = 0} When u = 0 , we require that t > 0 to avoid

trivialities which arise due to the fact that W(t) = 0 if

any coordinate of t is zero. We will refer to W (u) as

the u-level set of W and to { (t,W(t)) :t E R+N as the

graph of W

Theorem 2.1 (i) If d 2N then the dimension of the u-

level set is a.s. zero for any u If d < 2N then the

dimension of the u-level set is N - d/2 with positive

probability for any u This probability is 1 if u = 0

Proof (i) When d 2 2N , Orey and Pruitt (1973) have

shown that W does not hit points. Consequently the u-

level set is empty and the result follows trivially.

Assume d < 2N Then computations similar to those

of Kahane (1968, p. 147) or Adler (1977) can be carried out

for W to show that with positive probability, W (u)
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has positive 8 capacity for S < N -d/2 , implying that

the dimension of W- (u) is greater than or equal to

N-d/2 with positive probability. The dimension of W (u)

is a.s. not greater than N -d/2 by Theorem 3.1 to follow.

Thus for any u , the dimension of the u-level set is

N -d/2 with positive probability. We now show that this

probability is 1 if u = 0 By the scaling property of

W , with the same probability the set {tE A(<0> ,<l/n>) :0 < t

and W(t) = 01 has dimension N-d/2 for all n 1

Since this probability is positive, by the Zero-One Law of

Orey and Pruitt (1973, p. 143) for almost all w there is

an n such that the set {t A 1(<0> , <l/n>) : 0 < t and
-I

W(t,w) = 0} has dimension N-d/2 . Thus W (0) has

dimension N -d/2 a.s.

ii) The proof of ii) is similar to the proof of

Theorem 2.1 of Tran (1977) and hence is omitted. We now

turn to the evaluation of the N- d/2 measure of the level

sets and the {min 2N , N +d/2} -measure of the graph which is

a more complicated and interesting problem since Taylor's

arguments for N = 1 rely on the Strong Markov Property of

W(l 'd) and thus do not extend easily to W(N 'd)

3. The N-d/2 measure of the level sets is zero a.s.

First, we partition I into a grid of cubicles as done

in Tran (1977). Let m be a sequence of positive integers
n

Nwith m 2m For each m , partition I into m
n+l n n n

cubicles with sides parallel to coordinate axes and equal to
-1 -1
2 m . Let G(m n) be the collection of these cubicles.

Order the cubicles of L G(mk ) in such a way that the
k=l
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cubicles of G(mk) preceed the cubicles of G(mk+l) for

all k 1 Denote the ordered collection of cubicles by

{C } . Let Ck be a cubicle of {C n } with sides equal to

ak and let tk be the least vertex of Ck , i.e. closest

to <0> Pick i to be any positive number.

Define

(3.1) Dk = : sup I W(t , w) - Wt, w) I < a]
1 W t C C k

We will need the following lemma, the proof of which can be

found in Tran (1977 , Lemma 3.1).

Lemma 3.1 Let {B n be a subsequence of the sequence
n

of cubicles {C n  with Bn+ 1 ' Bn E G(mn) for all n 1

and {D n } be the sequence of events defined in (3.1) cor-

responding to this subsequence. Then P(Dn  infinitely often)

=1.

d
Theorem 3.1 Let u be an arbitrary point of Rd . Then

W- (u) has zero N - d/2-measure with probability one.

Proof It is enough to show that {t E I : W(t) = u)

has zero N - d/2 -measure almost surely. Consider the

collection of cubicles (C n ordered as above. Let tk

be the least vertex of C k  Pick W > 0 . Corresponding

to each cubicle Ck , let S k be the rectangle in RN+d

with sides parallel to the coordinate axes and with least

and larqest vertices at respectively
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(t ,j....,t k  , W1 (t k )  - 2 , . ,d (t k )  - a
N k k

and

k +aak a k 2 d k+
(t 1 + ak, tN (t ) + ak,...,W (t) + a k)

Define

V = S if { (t , W(t) t CI c S

= * otherwise

with 0 being the empty set.

For k > 1, define

Vk = k  if {(t ,W(t)) t 4ECk CSk and

k-i
(t W W(t)) t E Ck  jl Vj

= * otherwise

K
Choose K to be a positive integer and write y (m) as

y k~kYKV k=l

for brevity. Define T K = U and
k2:k

r = (mKN) - 1 (# of Ck EG(mK) with {(t,W(t)) : tECkI } K)

We now claim that Er K -0 o as K - . If the claim is not

true then by following the same line of argument presented

in the proof of Theorem 3.1 in Tran (1977) , we can construct

a subsequence {B n  of {C n  with Bn+ l c B n G(mn ) and

with P({ (t, W(t)) t B T n) E for all n _1. This% n n

can easily be seen to contradict Lemma 3.1

For each cubicle Ck E G(mK) , consider the class k

of rectangles in RN+d with sides parallel to coordinate

axes, least and largest vertices of the form

k k kmkn)
(t . . ,tk k lin ..k ,dmK- ')
(t1  N 1 K d K

and

(t~ + a * N +ak (kI + 1)mK, ... , (kd + )K 2)( k' . .tN k .....
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where k l . .,kd are integers.

Let Ck be any cubicle of G(m ) with

(t , WK(t) t C Ck K

Let M be a large positive integer to be specified later.

We shall follow the method used in the proof of Theorem 3.4

of Orey and Pruitt (1973) and count in a central block of
d

(2M +1) r-ctangles centered at Ek where Ek is the
k k , 1 ( k  Wd  tk )

element of k which contains (t 1.tN l (tk)d..... (t

Then, for all cubicles Ck of G(mK) , without taking into

account whether { (t , W(t)) : E C k } has been covered by

TK or not; we add any rectangles outside this central block

which are intersected by { (t , W(t)) : t E C k }  Denote the

number of rectangles added by Nk * Now, { (t , W(t)) :t E II

is totally covered by three collections of rectangles.

Let XN denote Lebesgue measure in RN  and Ll (u, i)

denote the union of cubicles Ck EG(mi) with Vk x and

also with u E {W(t) : t IE Ck Then d (L(u , m)) du

i=l R N 1

is no larger than the volume of TK Evidently,

K -dmd/2
Y I- / fx LI ( (u , m i )) du is not larger than the volume

i=l 1

.L--N

of I which is 2- N  Therefore

(3.2) K m d / 2  dA ( (U' ) du <cwd
K d

i=l JR NL1 i

Let L 2 (u , mK) denote the union of cubicles Ck  G(m K

with {(t , W(t)) t ECk }  K and with u r{W(t) : tCk}

Pick > 0 By a computation of Orey and Pruitt (1973
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Theorem 3.4) , we can pick M large enough such that ENk < C

independent of k

Now we obtain

E Rd XN (L(u' m du s [Er] MN [-(2M + 1) d m-N +

fR N 2 uKJ - K m [(Ml fK I 1 K
N (m-2 d -N

E mK (m) mK
K K K

S [Er K ] (2M+1 d m-d/2 + M-d/2

which implies that

(3.3) mK/
2  EXN(L 2 (u ,mK)) du < c[ErK] + ERd

Let b be a positive number and define a random variable

Y as follows

Y(w) = 1 if w E [sup j W(t) - W(<1>) j < b]
t I

= 0 otherwise.

Then E[YAN(L1(u , mi))) is equal to

x XN(Ck) P([uC {W(t) : t C Ck] [Vk ) ] [ = k1)

where the summation is over all k between Yi-l + 1 and

Yi "Now the a field generated by W(<4>) is independent

of V F(w(t) - W(< >)) with the latter beinq the smrallest

a field containing all a fields generated by W(t) - W(< '>)

with t e I . Observe that the event [Vk xf] is independent

of W(<,>) Then E[YAN(L1(u ,mi))] is equal to
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IN (Ck) P(u -W(<'>) E {W(t , W) -W(< > , W) : t E Ck}) P(dw)

where the integration is taken over all w in

[V k n [Y = 1]

d
Let a be a positive number and define U = Xi= [-a, a]

The density of -W(< >) is bounded below by a positive

constant on the set Xd= [-a -b , a + b] thus for any two
1 2.

points u and u in U and any w in

[Vk U ] U [Y = 1]

there exists a constant c which depends only on a , b

such that

1
P(u - W(< >) E {W(t , W) -W(< > , W) t C C k)

is bounded above by

cP(u 2  _-W(< --2>) E {W (t , W) -W(< 'Z> , W) :t E Ck}

Therefore

By a similar argument we can show that

1 2
(3.5) E[YX N(L2(u , mNi cE[YXN(L2(u , mi)

. .-.
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Also, (3.2) and (3.3) imply that

K d/2 d/2
(3.6) i Uj m E[YAN (L1 (u,mi))] du + umK  E[Y( 2(u,mK)m l du

i U U

can be made arbitrarily small by choosing p , E small and

K large enough. From (3.4) , (3.5) and (3.6) , we deduce

that

K md/2 E[YXN(L (u mi))] + md / 2 E[YX (L (u ,m)]

i=l EIYXN I 1 K N 2 K

can be made arbitrarily small for u E U . However

K
u L l ( u , m i ) u L 2 ( u M mK )

i=l

forms a covering of

{t C I : W(t) = u)

Thus clearly for almost all w with y(w) 1

AN-d /2AN {t I : W(t,w) = u} 0 for any u r U

Also, P(Y=1) 1 as b - and a can be chosen arbi-

trarily large. Therefore the N - d/2-measure of

(t E I : W(t) u} is almost surely zero for all u c Rd

including 0

4. The min{2N , N = d/2) -measure of the graph is zero almost

surely.
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Theorem 4.1 With probability one, the min{2N , N + d/2)

-measure of the graph is zero.

-2

Proof (i) d < 2N Choose m1  so that m I > v Each

rectangle Vk in TK can be contained in n0 cubes with

sides equal to those of Ck where

2 - d 3a )d
n _ (2pa k +i) d (

Next

N +d/2
YK (diam V k ) is bounded by
k=l

lyE - d N +d/2

( 3 pak )d (N+d) 2ak ]  g(k)
k=l

where g(k) = 1 if Vk x

= 0 otherwise.

Observe that

K aN S 2 - N Thus[ ak

k=l

(4.1) YK (diam Vk)N -d/2 < C d
k=1 k

The number of rectangles added in the central blocks is

N drKmK (2M+ 1)

Each rectangle can be contained in no more than (m-1+ ) d
K
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-1

cubes of side mK Now

(M!2 + 1)d < (2mi)dK

Thus for this collection of rectangles

(4.2) Ej (diam)N+d/2 <_ IEr g ] (2M+l)d mN (2m!)d x [(N+d) ] (m)]N+d/2

L K inK (2 K) K(~

s c[ErK)

With respect to the rectangles added outside the central blocks

(i)N+d/2 K ,2m4 d -1 N+d/2

(4•a3) E < _ +1 [ENkI (2K) [N+d) m-

<C

Since (4.1) , (4.2) and (4.3) can be made arbitrarily small by

choosing p , c small and K large, we can conclude that

the expectation of the N + d/2-measure of {(t W(t)) tE I)

is zero. Therefore the graph has zero N + d/2 -measure a.s.

ii) d 2! 2N

Cover the set {(t ,W(t)) : tE I) as in part (i)

Now (4.1) becomes

2N 2 2 a N
(4.4) (diam Vk  IN_ (p '2

k k=l kk

!5 K N 2 ak + d4 2ak]N

k=l

2N
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Next, (4.2) becomes

(4.5) E (diam)2 = [Er K ] (2M+ 1) dmN N(MK1) 2 + d(mK)2]N

< [Er K ] c

Similarly, (4.3) is replaced by

(4.6) E (diam)2 N  < cv

As above, (4.4) , (4.5) and (4.6) imply that the 2N-measure

of the graph is zero a.s.

_. , , . . . , • , i $" , ,- . ,,,- '- A~j~ mm '
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